Riemannian Graph Diffusion for DT-MRI Regularization

نویسندگان

  • Fan Zhang
  • Edwin R. Hancock
چکیده

A new method for diffusion tensor MRI (DT-MRI) regularization is presented that relies on graph diffusion. We represent a DT image using a weighted graph, where the weights of edges are functions of the geodesic distances between tensors. Diffusion across this graph with time is captured by the heat-equation, and the solution, i.e. the heat kernel, is found by exponentiating the Laplacian eigen-system with time. Tensor regularization is accomplished by computing the Riemannian weighted mean using the heat kernel as its weights. The method can efficiently remove noise, while preserving the fine details of images. Experiments on synthetic and real-world datasets illustrate the effectiveness of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor MRI Regularization via Graph Diffusion

A new method for diffusion tensor (DT) image regularization is presented that relies on heat diffusion on discrete structures. We represent a DT image using a weighted undirected graph, where the weights of the edges are determined from the geometry of the white matter fiber pathways. Diffusion across this weighted graph is captured by the heat equation, and the solution, i.e. the heat kernel, ...

متن کامل

A Riemannian approach to anisotropic filtering of tensor fields

Tensors are nowadays an increasing research domain in different areas, especially in image processing, motivated for example by DT-MRI (Diffusion Tensor Magnetic Resonance Imaging). Up to now, algorithms and tools developed to deal with tensors were founded on the assumption of a matrix vector space with the constraint of remaining symmetric positive definite matrices. On the contrary, our appr...

متن کامل

Variational Frameworks for DT-MRI Estimation, Regularization and Visualization

We address three crucial issues encountered in DT-MRI (Diffusion Tensor Magnetic Resonance Imaging) : diffusion tensor Estimation, Regularization and fiber bundle Visualization. We first review related algorithms existing in the literature and propose then alternative variational formalisms that lead to new and improved schemes, thanks to the preservation of important tensor constraints (positi...

متن کامل

Log-Euclidean metrics for fast and simple calculus on diffusion tensors.

Diffusion tensor imaging (DT-MRI or DTI) is an emerging imaging modality whose importance has been growing considerably. However, the processing of this type of data (i.e., symmetric positive-definite matrices), called "tensors" here, has proved difficult in recent years. Usual Euclidean operations on matrices suffer from many defects on tensors, which have led to the use of many ad hoc methods...

متن کامل

Neuronal Fiber Delineation in Area of Edema from Diffusion Weighted MRI

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is a non invasive method for brain neuronal fibers delineation. Here we show a modification for DT-MRI that allows delineation of neuronal fibers which are infiltrated by edema. We use the Muliple Tensor Variational (MTV) framework which replaces the diffusion model of DT-MRI with a multiple component model and fits it to the signal attenuati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 9 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006